'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} Details: We have computed the following set of weak (innermost) dependency pairs: { a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , a__c^#(X) -> c_1() , a__h^#(X) -> c_2(a__c^#(d(X))) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(c(X)) -> c_4(a__c^#(X)) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , mark^#(g(X)) -> c_6() , mark^#(d(X)) -> c_7() , a__f^#(X) -> c_8() , a__c^#(X) -> c_9() , a__h^#(X) -> c_10()} The usable rules are: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} The estimated dependency graph contains the following edges: {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} ==> {a__c^#(X) -> c_9()} {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} ==> {a__c^#(X) -> c_1()} {a__h^#(X) -> c_2(a__c^#(d(X)))} ==> {a__c^#(X) -> c_9()} {a__h^#(X) -> c_2(a__c^#(d(X)))} ==> {a__c^#(X) -> c_1()} {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} ==> {a__f^#(X) -> c_8()} {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} ==> {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} {mark^#(c(X)) -> c_4(a__c^#(X))} ==> {a__c^#(X) -> c_9()} {mark^#(c(X)) -> c_4(a__c^#(X))} ==> {a__c^#(X) -> c_1()} {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} ==> {a__h^#(X) -> c_10()} {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} ==> {a__h^#(X) -> c_2(a__c^#(d(X)))} We consider the following path(s): 1) { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , a__c^#(X) -> c_9()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__c^#(X) -> c_9()} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__c^#(X) -> c_9()} and weakly orienting the rules { a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__c^#(X) -> c_9()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [4] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { a__c^#(X) -> c_9() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { mark(c(X)) -> a__c(X) , a__c^#(X) -> c_9() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_9() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_9() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [9] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_9() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_9() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , f_0(2) -> 2 , f_1(2) -> 11 , f_1(5) -> 4 , f_1(5) -> 5 , f_1(10) -> 9 , f_1(14) -> 13 , a__c_0(2) -> 4 , a__c_1(2) -> 5 , a__c_1(6) -> 4 , a__c_1(6) -> 5 , a__c_1(13) -> 4 , a__c_1(13) -> 5 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(4) -> 14 , g_1(11) -> 10 , d_0(2) -> 2 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(5) -> 6 , d_1(6) -> 4 , d_1(6) -> 5 , d_1(13) -> 4 , d_1(13) -> 5 , a__h_1(5) -> 4 , a__h_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 5 , c_1(6) -> 4 , c_1(6) -> 5 , c_1(13) -> 4 , c_1(13) -> 5 , h_0(2) -> 2 , h_1(5) -> 4 , h_1(5) -> 5 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 7 , c_0_0(1) -> 1 , c_0_1(8) -> 1 , c_0_1(12) -> 3 , c_0_1(12) -> 7 , a__c^#_0(2) -> 1 , a__c^#_1(9) -> 8 , a__c^#_1(13) -> 12 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(7) -> 1 , c_9_0() -> 1 , c_9_1() -> 8 , c_9_1() -> 12} 2) { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [3] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [7] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(X) -> f(X)} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [4] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [5] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { mark(h(X)) -> a__h(mark(X)) , a__h(X) -> a__c(d(X))} and weakly orienting the rules { a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(h(X)) -> a__h(mark(X)) , a__h(X) -> a__c(d(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [3] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [12] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark(h(X)) -> a__h(mark(X)) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [8] a__f^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [3] a__c^#(x1) = [1] x1 + [1] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(f(X)) -> a__c(f(g(f(X))))} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(f(X)) -> a__c(f(g(f(X))))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [8] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [8] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [5] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , a__h(X) -> h(X)} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , a__h(X) -> h(X)} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , f_0(2) -> 2 , f_1(2) -> 11 , f_1(5) -> 4 , f_1(5) -> 5 , f_1(10) -> 9 , f_1(14) -> 13 , f_2(5) -> 19 , f_2(18) -> 17 , a__c_0(2) -> 4 , a__c_1(2) -> 5 , a__c_1(6) -> 4 , a__c_2(15) -> 5 , a__c_2(17) -> 4 , a__c_2(17) -> 5 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(4) -> 14 , g_1(11) -> 10 , g_2(19) -> 18 , d_0(2) -> 2 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(4) -> 6 , d_1(5) -> 2 , d_1(5) -> 4 , d_1(5) -> 5 , d_1(6) -> 4 , d_2(5) -> 15 , d_2(15) -> 5 , d_2(17) -> 4 , d_2(17) -> 5 , a__h_0(4) -> 4 , a__h_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 5 , c_1(6) -> 4 , c_2(15) -> 5 , c_2(17) -> 4 , c_2(17) -> 5 , h_0(2) -> 2 , h_1(4) -> 4 , h_2(5) -> 5 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 7 , c_0_0(1) -> 1 , c_0_1(8) -> 1 , c_0_1(12) -> 3 , c_0_2(16) -> 7 , a__c^#_0(2) -> 1 , a__c^#_1(9) -> 8 , a__c^#_1(13) -> 12 , a__c^#_2(17) -> 16 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(7) -> 1} 3) { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , a__c^#(X) -> c_1()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__c^#(X) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__c^#(X) -> c_1()} and weakly orienting the rules { a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__c^#(X) -> c_1()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [4] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { a__c^#(X) -> c_1() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [1] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { mark(c(X)) -> a__c(X) , a__c^#(X) -> c_1() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_1() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_1() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [9] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_1() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(c(X)) -> a__c(X) , a__c^#(X) -> c_1() , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X))))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , f_0(2) -> 2 , f_1(2) -> 11 , f_1(5) -> 4 , f_1(5) -> 5 , f_1(10) -> 9 , f_1(14) -> 13 , a__c_0(2) -> 4 , a__c_1(2) -> 5 , a__c_1(6) -> 4 , a__c_1(6) -> 5 , a__c_1(13) -> 4 , a__c_1(13) -> 5 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(4) -> 14 , g_1(11) -> 10 , d_0(2) -> 2 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(5) -> 6 , d_1(6) -> 4 , d_1(6) -> 5 , d_1(13) -> 4 , d_1(13) -> 5 , a__h_1(5) -> 4 , a__h_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 5 , c_1(6) -> 4 , c_1(6) -> 5 , c_1(13) -> 4 , c_1(13) -> 5 , h_0(2) -> 2 , h_1(5) -> 4 , h_1(5) -> 5 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 7 , c_0_0(1) -> 1 , c_0_1(8) -> 1 , c_0_1(12) -> 3 , c_0_1(12) -> 7 , a__c^#_0(2) -> 1 , a__c^#_1(9) -> 8 , a__c^#_1(13) -> 12 , c_1_0() -> 1 , c_1_1() -> 8 , c_1_1() -> 12 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(7) -> 1} 4) { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__c^#(X) -> c_9()} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__c^#(X) -> c_9()} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__c^#(X) -> c_9()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [2] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__h^#(X) -> c_2(a__c^#(d(X)))} and weakly orienting the rules { a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__h^#(X) -> c_2(a__c^#(d(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [7] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(X) -> f(X) , a__h(X) -> h(X)} and weakly orienting the rules { a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(X) -> f(X) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [3] f(x1) = [1] x1 + [2] a__c(x1) = [1] x1 + [5] g(x1) = [1] x1 + [2] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [1] c_1() = [0] a__h^#(x1) = [1] x1 + [4] c_2(x1) = [1] x1 + [3] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} and weakly orienting the rules { a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__h(X) -> a__c(d(X))} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__h(X) -> a__c(d(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(f(X)) -> a__c(f(g(f(X))))} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(f(X)) -> a__c(f(g(f(X))))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [4] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [3] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [1] c_1() = [0] a__h^#(x1) = [1] x1 + [4] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__h(X) -> a__c(d(X)) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__h(X) -> a__c(d(X)) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_9() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(7) -> 4 , a__f_1(7) -> 7 , f_0(2) -> 2 , f_1(7) -> 4 , f_1(7) -> 7 , f_1(15) -> 8 , a__c_0(2) -> 4 , a__c_1(2) -> 7 , a__c_1(8) -> 4 , a__c_1(8) -> 7 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 7 , g_1(7) -> 15 , d_0(2) -> 2 , d_0(2) -> 4 , d_0(4) -> 6 , d_1(2) -> 7 , d_1(2) -> 11 , d_1(4) -> 13 , d_1(7) -> 8 , d_1(8) -> 4 , d_1(8) -> 7 , a__h_1(7) -> 4 , a__h_1(7) -> 7 , mark_0(2) -> 4 , mark_1(2) -> 7 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 7 , c_1(8) -> 4 , c_1(8) -> 7 , h_0(2) -> 2 , h_1(7) -> 4 , h_1(7) -> 7 , a__c^#_0(2) -> 1 , a__c^#_0(6) -> 5 , a__c^#_1(8) -> 14 , a__c^#_1(11) -> 10 , a__c^#_1(13) -> 12 , a__h^#_0(2) -> 1 , a__h^#_0(4) -> 3 , a__h^#_1(7) -> 9 , c_2_0(1) -> 1 , c_2_0(5) -> 3 , c_2_1(10) -> 1 , c_2_1(12) -> 3 , c_2_1(14) -> 9 , mark^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(9) -> 1 , c_9_0() -> 1 , c_9_0() -> 5 , c_9_1() -> 10 , c_9_1() -> 12 , c_9_1() -> 14} 5) { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__c^#(X) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__c^#(X) -> c_1()} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__c^#(X) -> c_1()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [2] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__h^#(X) -> c_2(a__c^#(d(X)))} and weakly orienting the rules { a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__h^#(X) -> c_2(a__c^#(d(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [7] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(X) -> f(X) , a__h(X) -> h(X)} and weakly orienting the rules { a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(X) -> f(X) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [3] f(x1) = [1] x1 + [2] a__c(x1) = [1] x1 + [5] g(x1) = [1] x1 + [2] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [1] c_1() = [0] a__h^#(x1) = [1] x1 + [4] c_2(x1) = [1] x1 + [3] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} and weakly orienting the rules { a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__h(X) -> a__c(d(X))} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__h(X) -> a__c(d(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(f(X)) -> a__c(f(g(f(X))))} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(f(X)) -> a__c(f(g(f(X))))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [4] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [3] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [1] c_1() = [0] a__h^#(x1) = [1] x1 + [4] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__h(X) -> a__c(d(X)) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__h(X) -> a__c(d(X)) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__f(X) -> f(X) , a__h(X) -> h(X) , a__h^#(X) -> c_2(a__c^#(d(X))) , a__c^#(X) -> c_1() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(7) -> 4 , a__f_1(7) -> 7 , f_0(2) -> 2 , f_1(7) -> 4 , f_1(7) -> 7 , f_1(15) -> 8 , a__c_0(2) -> 4 , a__c_1(2) -> 7 , a__c_1(8) -> 4 , a__c_1(8) -> 7 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 7 , g_1(7) -> 15 , d_0(2) -> 2 , d_0(2) -> 4 , d_0(4) -> 6 , d_1(2) -> 7 , d_1(2) -> 11 , d_1(4) -> 13 , d_1(7) -> 8 , d_1(8) -> 4 , d_1(8) -> 7 , a__h_1(7) -> 4 , a__h_1(7) -> 7 , mark_0(2) -> 4 , mark_1(2) -> 7 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 7 , c_1(8) -> 4 , c_1(8) -> 7 , h_0(2) -> 2 , h_1(7) -> 4 , h_1(7) -> 7 , a__c^#_0(2) -> 1 , a__c^#_0(6) -> 5 , a__c^#_1(8) -> 14 , a__c^#_1(11) -> 10 , a__c^#_1(13) -> 12 , c_1_0() -> 1 , c_1_0() -> 5 , c_1_1() -> 10 , c_1_1() -> 12 , c_1_1() -> 14 , a__h^#_0(2) -> 1 , a__h^#_0(4) -> 3 , a__h^#_1(7) -> 9 , c_2_0(1) -> 1 , c_2_0(5) -> 3 , c_2_1(10) -> 1 , c_2_1(12) -> 3 , c_2_1(14) -> 9 , mark^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(9) -> 1} 6) { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X)))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X)))} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__h^#(X) -> c_2(a__c^#(d(X)))} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__h^#(X) -> c_2(a__c^#(d(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} and weakly orienting the rules { a__h^#(X) -> c_2(a__c^#(d(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [7] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [7] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [4] c_1() = [0] a__h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [13] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_2(a__c^#(d(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(7) -> 4 , a__f_1(7) -> 7 , f_0(2) -> 2 , f_1(7) -> 4 , f_1(7) -> 7 , f_1(15) -> 8 , a__c_0(2) -> 4 , a__c_1(2) -> 7 , a__c_1(8) -> 4 , a__c_1(8) -> 7 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 7 , g_1(7) -> 15 , d_0(2) -> 2 , d_0(2) -> 4 , d_0(4) -> 6 , d_1(2) -> 7 , d_1(2) -> 11 , d_1(4) -> 13 , d_1(7) -> 8 , d_1(8) -> 4 , d_1(8) -> 7 , a__h_1(7) -> 4 , a__h_1(7) -> 7 , mark_0(2) -> 4 , mark_1(2) -> 7 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 7 , c_1(8) -> 4 , c_1(8) -> 7 , h_0(2) -> 2 , h_1(7) -> 4 , h_1(7) -> 7 , a__c^#_0(2) -> 1 , a__c^#_0(6) -> 5 , a__c^#_1(8) -> 14 , a__c^#_1(11) -> 10 , a__c^#_1(13) -> 12 , a__h^#_0(2) -> 1 , a__h^#_0(4) -> 3 , a__h^#_1(7) -> 9 , c_2_0(1) -> 1 , c_2_0(5) -> 3 , c_2_1(10) -> 1 , c_2_1(12) -> 3 , c_2_1(14) -> 9 , mark^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(9) -> 1} 7) { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [3] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(X) -> c_8()} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(X) -> c_8()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [3] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { a__f^#(X) -> c_8() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [3] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [3] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [8] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_1(8) -> 6 , a__c_0(2) -> 4 , a__c_1(2) -> 5 , a__c_1(6) -> 4 , a__c_1(6) -> 5 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(5) -> 8 , d_0(2) -> 2 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(5) -> 6 , d_1(6) -> 4 , d_1(6) -> 5 , a__h_1(5) -> 4 , a__h_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 5 , c_1(6) -> 4 , c_1(6) -> 5 , h_0(2) -> 2 , h_1(5) -> 4 , h_1(5) -> 5 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 7 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(7) -> 1 , c_8_0() -> 1 , c_8_0() -> 3 , c_8_1() -> 7} 8) { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_10()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_10()} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [3] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__h^#(X) -> c_10()} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__h^#(X) -> c_10()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [3] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} and weakly orienting the rules { a__h^#(X) -> c_10() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [3] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [3] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_10() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [8] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_10() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_10() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_10() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , a__h^#(X) -> c_10() , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_1(8) -> 6 , a__c_0(2) -> 4 , a__c_1(2) -> 5 , a__c_1(6) -> 4 , a__c_1(6) -> 5 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(5) -> 8 , d_0(2) -> 2 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(5) -> 6 , d_1(6) -> 4 , d_1(6) -> 5 , a__h_1(5) -> 4 , a__h_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 5 , c_1(6) -> 4 , c_1(6) -> 5 , h_0(2) -> 2 , h_1(5) -> 4 , h_1(5) -> 5 , a__h^#_0(2) -> 1 , a__h^#_0(4) -> 3 , a__h^#_1(5) -> 7 , mark^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(7) -> 1 , c_10_0() -> 1 , c_10_0() -> 3 , c_10_1() -> 7} 9) {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [11] g(x1) = [1] x1 + [4] d(x1) = [1] x1 + [6] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [4] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [8] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [5] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_1(8) -> 6 , a__c_0(2) -> 4 , a__c_1(2) -> 5 , a__c_1(6) -> 4 , a__c_1(6) -> 5 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(5) -> 8 , d_0(2) -> 2 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(5) -> 6 , d_1(6) -> 4 , d_1(6) -> 5 , a__h_1(5) -> 4 , a__h_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 5 , c_1(6) -> 4 , c_1(6) -> 5 , h_0(2) -> 2 , h_1(5) -> 4 , h_1(5) -> 5 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 7 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(7) -> 1} 10) {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(c(X)) -> a__c(X) , mark(h(X)) -> a__h(mark(X)) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__f(f(X)) -> a__c(f(g(f(X)))) , a__c(X) -> d(X) , a__h(X) -> a__c(d(X)) , a__f(X) -> f(X) , a__c(X) -> c(X) , a__h(X) -> h(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X)))} Details: We apply the weight gap principle, strictly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} and weakly orienting the rules { mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(h(X)) -> c_5(a__h^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [11] g(x1) = [1] x1 + [4] d(x1) = [1] x1 + [6] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(c(X)) -> a__c(X)} and weakly orienting the rules { mark^#(h(X)) -> c_5(a__h^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(c(X)) -> a__c(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [4] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} and weakly orienting the rules { mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [1] g(x1) = [1] x1 + [8] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} and weakly orienting the rules { a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [5] f(x1) = [1] x1 + [0] a__c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> a__h(mark(X))} Weak Rules: { a__f(f(X)) -> a__c(f(g(f(X)))) , a__f(X) -> f(X) , a__h(X) -> a__c(d(X)) , a__h(X) -> h(X) , mark(c(X)) -> a__c(X) , mark^#(h(X)) -> c_5(a__h^#(mark(X))) , mark(g(X)) -> g(X) , mark(d(X)) -> d(X) , a__c(X) -> d(X) , a__c(X) -> c(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_1(8) -> 6 , a__c_0(2) -> 4 , a__c_1(2) -> 5 , a__c_1(6) -> 4 , a__c_1(6) -> 5 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 5 , g_1(5) -> 8 , d_0(2) -> 2 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(5) -> 6 , d_1(6) -> 4 , d_1(6) -> 5 , a__h_1(5) -> 4 , a__h_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_1(2) -> 5 , c_1(6) -> 4 , c_1(6) -> 5 , h_0(2) -> 2 , h_1(5) -> 4 , h_1(5) -> 5 , a__h^#_0(2) -> 1 , a__h^#_0(4) -> 3 , a__h^#_1(5) -> 7 , mark^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(7) -> 1} 11) { mark^#(c(X)) -> c_4(a__c^#(X)) , a__c^#(X) -> c_1()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {a__c^#(X) -> c_1()} Weak Rules: {mark^#(c(X)) -> c_4(a__c^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {a__c^#(X) -> c_1()} and weakly orienting the rules {mark^#(c(X)) -> c_4(a__c^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__c^#(X) -> c_1()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [1] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [1] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { a__c^#(X) -> c_1() , mark^#(c(X)) -> c_4(a__c^#(X))} Details: The given problem does not contain any strict rules 12) {mark^#(c(X)) -> c_4(a__c^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(c(X)) -> c_4(a__c^#(X))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(c(X)) -> c_4(a__c^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(c(X)) -> c_4(a__c^#(X))} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [1] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(c(X)) -> c_4(a__c^#(X))} Details: The given problem does not contain any strict rules 13) { mark^#(c(X)) -> c_4(a__c^#(X)) , a__c^#(X) -> c_9()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {a__c^#(X) -> c_9()} Weak Rules: {mark^#(c(X)) -> c_4(a__c^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {a__c^#(X) -> c_9()} and weakly orienting the rules {mark^#(c(X)) -> c_4(a__c^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__c^#(X) -> c_9()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [1] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [1] x1 + [1] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { a__c^#(X) -> c_9() , mark^#(c(X)) -> c_4(a__c^#(X))} Details: The given problem does not contain any strict rules 14) {mark^#(d(X)) -> c_7()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(d(X)) -> c_7()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(d(X)) -> c_7()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(d(X)) -> c_7()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [1] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(d(X)) -> c_7()} Details: The given problem does not contain any strict rules 15) {mark^#(g(X)) -> c_6()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(g(X)) -> c_6()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(g(X)) -> c_6()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(g(X)) -> c_6()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a__c(x1) = [0] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [0] x1 + [0] a__h(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] a__c^#(x1) = [0] x1 + [0] c_1() = [0] a__h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6() = [0] c_7() = [0] c_8() = [0] c_9() = [0] c_10() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(g(X)) -> c_6()} Details: The given problem does not contain any strict rules