'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a__f(f(X)) -> a__c(f(g(f(X))))
     , a__c(X) -> d(X)
     , a__h(X) -> a__c(d(X))
     , mark(f(X)) -> a__f(mark(X))
     , mark(c(X)) -> a__c(X)
     , mark(h(X)) -> a__h(mark(X))
     , mark(g(X)) -> g(X)
     , mark(d(X)) -> d(X)
     , a__f(X) -> f(X)
     , a__c(X) -> c(X)
     , a__h(X) -> h(X)}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
    , a__c^#(X) -> c_1()
    , a__h^#(X) -> c_2(a__c^#(d(X)))
    , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
    , mark^#(c(X)) -> c_4(a__c^#(X))
    , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
    , mark^#(g(X)) -> c_6()
    , mark^#(d(X)) -> c_7()
    , a__f^#(X) -> c_8()
    , a__c^#(X) -> c_9()
    , a__h^#(X) -> c_10()}
  
  The usable rules are:
   {  mark(f(X)) -> a__f(mark(X))
    , mark(c(X)) -> a__c(X)
    , mark(h(X)) -> a__h(mark(X))
    , mark(g(X)) -> g(X)
    , mark(d(X)) -> d(X)
    , a__f(f(X)) -> a__c(f(g(f(X))))
    , a__c(X) -> d(X)
    , a__h(X) -> a__c(d(X))
    , a__f(X) -> f(X)
    , a__c(X) -> c(X)
    , a__h(X) -> h(X)}
  
  The estimated dependency graph contains the following edges:
   {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
     ==> {a__c^#(X) -> c_9()}
   {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
     ==> {a__c^#(X) -> c_1()}
   {a__h^#(X) -> c_2(a__c^#(d(X)))}
     ==> {a__c^#(X) -> c_9()}
   {a__h^#(X) -> c_2(a__c^#(d(X)))}
     ==> {a__c^#(X) -> c_1()}
   {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
     ==> {a__f^#(X) -> c_8()}
   {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
     ==> {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
   {mark^#(c(X)) -> c_4(a__c^#(X))}
     ==> {a__c^#(X) -> c_9()}
   {mark^#(c(X)) -> c_4(a__c^#(X))}
     ==> {a__c^#(X) -> c_1()}
   {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
     ==> {a__h^#(X) -> c_10()}
   {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
     ==> {a__h^#(X) -> c_2(a__c^#(d(X)))}
  
  We consider the following path(s):
   1) {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
       , a__c^#(X) -> c_9()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , a__c^#(X) -> c_9()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__c^#(X) -> c_9()}
            and weakly orienting the rules
            {  a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__c^#(X) -> c_9()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [4]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  a__c^#(X) -> c_9()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , a__c^#(X) -> c_9()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(c(X)) -> a__c(X)
             , a__c^#(X) -> c_9()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__h(X) -> a__c(d(X))
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(f(X)) -> a__c(f(g(f(X))))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(c(X)) -> a__c(X)
             , a__c^#(X) -> c_9()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(f(X)) -> a__c(f(g(f(X))))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [9]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__f(X) -> f(X)
                 , a__h(X) -> a__c(d(X))
                 , a__h(X) -> h(X)
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , mark(c(X)) -> a__c(X)
                 , a__c^#(X) -> c_9()
                 , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__f(X) -> f(X)
                   , a__h(X) -> a__c(d(X))
                   , a__h(X) -> h(X)
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , mark(c(X)) -> a__c(X)
                   , a__c^#(X) -> c_9()
                   , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , f_0(2) -> 2
                 , f_1(2) -> 11
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(10) -> 9
                 , f_1(14) -> 13
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 5
                 , a__c_1(6) -> 4
                 , a__c_1(6) -> 5
                 , a__c_1(13) -> 4
                 , a__c_1(13) -> 5
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(4) -> 14
                 , g_1(11) -> 10
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(5) -> 6
                 , d_1(6) -> 4
                 , d_1(6) -> 5
                 , d_1(13) -> 4
                 , d_1(13) -> 5
                 , a__h_1(5) -> 4
                 , a__h_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 5
                 , c_1(6) -> 4
                 , c_1(6) -> 5
                 , c_1(13) -> 4
                 , c_1(13) -> 5
                 , h_0(2) -> 2
                 , h_1(5) -> 4
                 , h_1(5) -> 5
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 7
                 , c_0_0(1) -> 1
                 , c_0_1(8) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(12) -> 7
                 , a__c^#_0(2) -> 1
                 , a__c^#_1(9) -> 8
                 , a__c^#_1(13) -> 12
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1
                 , c_9_0() -> 1
                 , c_9_1() -> 8
                 , c_9_1() -> 12}
      
   2) {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [7]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(X) -> f(X)}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [4]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [5]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  mark(h(X)) -> a__h(mark(X))
             , a__h(X) -> a__c(d(X))}
            and weakly orienting the rules
            {  a__f(X) -> f(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(h(X)) -> a__h(mark(X))
               , a__h(X) -> a__c(d(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [3]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [12]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark(h(X)) -> a__h(mark(X))
             , a__h(X) -> a__c(d(X))
             , a__f(X) -> f(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [8]
                  a__f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [3]
                  a__c^#(x1) = [1] x1 + [1]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(f(X)) -> a__c(f(g(f(X))))}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark(h(X)) -> a__h(mark(X))
             , a__h(X) -> a__c(d(X))
             , a__f(X) -> f(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(f(X)) -> a__c(f(g(f(X))))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [8]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [8]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [5]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , a__h(X) -> h(X)}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , mark(c(X)) -> a__c(X)
                 , mark(h(X)) -> a__h(mark(X))
                 , a__h(X) -> a__c(d(X))
                 , a__f(X) -> f(X)
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , a__h(X) -> h(X)}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , mark(c(X)) -> a__c(X)
                   , mark(h(X)) -> a__h(mark(X))
                   , a__h(X) -> a__c(d(X))
                   , a__f(X) -> f(X)
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , f_0(2) -> 2
                 , f_1(2) -> 11
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(10) -> 9
                 , f_1(14) -> 13
                 , f_2(5) -> 19
                 , f_2(18) -> 17
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 5
                 , a__c_1(6) -> 4
                 , a__c_2(15) -> 5
                 , a__c_2(17) -> 4
                 , a__c_2(17) -> 5
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(4) -> 14
                 , g_1(11) -> 10
                 , g_2(19) -> 18
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(4) -> 6
                 , d_1(5) -> 2
                 , d_1(5) -> 4
                 , d_1(5) -> 5
                 , d_1(6) -> 4
                 , d_2(5) -> 15
                 , d_2(15) -> 5
                 , d_2(17) -> 4
                 , d_2(17) -> 5
                 , a__h_0(4) -> 4
                 , a__h_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 5
                 , c_1(6) -> 4
                 , c_2(15) -> 5
                 , c_2(17) -> 4
                 , c_2(17) -> 5
                 , h_0(2) -> 2
                 , h_1(4) -> 4
                 , h_2(5) -> 5
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 7
                 , c_0_0(1) -> 1
                 , c_0_1(8) -> 1
                 , c_0_1(12) -> 3
                 , c_0_2(16) -> 7
                 , a__c^#_0(2) -> 1
                 , a__c^#_1(9) -> 8
                 , a__c^#_1(13) -> 12
                 , a__c^#_2(17) -> 16
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1}
      
   3) {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
       , a__c^#(X) -> c_1()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , a__c^#(X) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__c^#(X) -> c_1()}
            and weakly orienting the rules
            {  a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__c^#(X) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [4]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  a__c^#(X) -> c_1()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [1]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , a__c^#(X) -> c_1()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(c(X)) -> a__c(X)
             , a__c^#(X) -> c_1()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__h(X) -> a__c(d(X))
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(f(X)) -> a__c(f(g(f(X))))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(c(X)) -> a__c(X)
             , a__c^#(X) -> c_1()
             , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(f(X)) -> a__c(f(g(f(X))))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [9]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__f(X) -> f(X)
                 , a__h(X) -> a__c(d(X))
                 , a__h(X) -> h(X)
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , mark(c(X)) -> a__c(X)
                 , a__c^#(X) -> c_1()
                 , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__f(X) -> f(X)
                   , a__h(X) -> a__c(d(X))
                   , a__h(X) -> h(X)
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , mark(c(X)) -> a__c(X)
                   , a__c^#(X) -> c_1()
                   , a__f^#(f(X)) -> c_0(a__c^#(f(g(f(X)))))
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , f_0(2) -> 2
                 , f_1(2) -> 11
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(10) -> 9
                 , f_1(14) -> 13
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 5
                 , a__c_1(6) -> 4
                 , a__c_1(6) -> 5
                 , a__c_1(13) -> 4
                 , a__c_1(13) -> 5
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(4) -> 14
                 , g_1(11) -> 10
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(5) -> 6
                 , d_1(6) -> 4
                 , d_1(6) -> 5
                 , d_1(13) -> 4
                 , d_1(13) -> 5
                 , a__h_1(5) -> 4
                 , a__h_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 5
                 , c_1(6) -> 4
                 , c_1(6) -> 5
                 , c_1(13) -> 4
                 , c_1(13) -> 5
                 , h_0(2) -> 2
                 , h_1(5) -> 4
                 , h_1(5) -> 5
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 7
                 , c_0_0(1) -> 1
                 , c_0_1(8) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(12) -> 7
                 , a__c^#_0(2) -> 1
                 , a__c^#_1(9) -> 8
                 , a__c^#_1(13) -> 12
                 , c_1_0() -> 1
                 , c_1_1() -> 8
                 , c_1_1() -> 12
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1}
      
   4) {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
       , a__h^#(X) -> c_2(a__c^#(d(X)))
       , a__c^#(X) -> c_9()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , a__h^#(X) -> c_2(a__c^#(d(X)))
               , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
               , a__c^#(X) -> c_9()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__c^#(X) -> c_9()}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__c^#(X) -> c_9()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [2]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__h^#(X) -> c_2(a__c^#(d(X)))}
            and weakly orienting the rules
            {  a__c^#(X) -> c_9()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__h^#(X) -> c_2(a__c^#(d(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [7]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(X) -> f(X)
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_9()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(X) -> f(X)
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [3]
                  f(x1) = [1] x1 + [2]
                  a__c(x1) = [1] x1 + [5]
                  g(x1) = [1] x1 + [2]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [1]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [4]
                  c_2(x1) = [1] x1 + [3]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
            and weakly orienting the rules
            {  a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_9()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_9()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__h(X) -> a__c(d(X))}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_9()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__h(X) -> a__c(d(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(f(X)) -> a__c(f(g(f(X))))}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_9()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(f(X)) -> a__c(f(g(f(X))))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [4]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [3]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [1]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [4]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__h(X) -> a__c(d(X))
                 , mark(c(X)) -> a__c(X)
                 , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                 , a__f(X) -> f(X)
                 , a__h(X) -> h(X)
                 , a__h^#(X) -> c_2(a__c^#(d(X)))
                 , a__c^#(X) -> c_9()
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__h(X) -> a__c(d(X))
                   , mark(c(X)) -> a__c(X)
                   , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                   , a__f(X) -> f(X)
                   , a__h(X) -> h(X)
                   , a__h^#(X) -> c_2(a__c^#(d(X)))
                   , a__c^#(X) -> c_9()
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(7) -> 4
                 , a__f_1(7) -> 7
                 , f_0(2) -> 2
                 , f_1(7) -> 4
                 , f_1(7) -> 7
                 , f_1(15) -> 8
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 7
                 , a__c_1(8) -> 4
                 , a__c_1(8) -> 7
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 7
                 , g_1(7) -> 15
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_0(4) -> 6
                 , d_1(2) -> 7
                 , d_1(2) -> 11
                 , d_1(4) -> 13
                 , d_1(7) -> 8
                 , d_1(8) -> 4
                 , d_1(8) -> 7
                 , a__h_1(7) -> 4
                 , a__h_1(7) -> 7
                 , mark_0(2) -> 4
                 , mark_1(2) -> 7
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 7
                 , c_1(8) -> 4
                 , c_1(8) -> 7
                 , h_0(2) -> 2
                 , h_1(7) -> 4
                 , h_1(7) -> 7
                 , a__c^#_0(2) -> 1
                 , a__c^#_0(6) -> 5
                 , a__c^#_1(8) -> 14
                 , a__c^#_1(11) -> 10
                 , a__c^#_1(13) -> 12
                 , a__h^#_0(2) -> 1
                 , a__h^#_0(4) -> 3
                 , a__h^#_1(7) -> 9
                 , c_2_0(1) -> 1
                 , c_2_0(5) -> 3
                 , c_2_1(10) -> 1
                 , c_2_1(12) -> 3
                 , c_2_1(14) -> 9
                 , mark^#_0(2) -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(9) -> 1
                 , c_9_0() -> 1
                 , c_9_0() -> 5
                 , c_9_1() -> 10
                 , c_9_1() -> 12
                 , c_9_1() -> 14}
      
   5) {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
       , a__h^#(X) -> c_2(a__c^#(d(X)))
       , a__c^#(X) -> c_1()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , a__h^#(X) -> c_2(a__c^#(d(X)))
               , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
               , a__c^#(X) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__c^#(X) -> c_1()}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__c^#(X) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [2]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__h^#(X) -> c_2(a__c^#(d(X)))}
            and weakly orienting the rules
            {  a__c^#(X) -> c_1()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__h^#(X) -> c_2(a__c^#(d(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [7]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(X) -> f(X)
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_1()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(X) -> f(X)
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [3]
                  f(x1) = [1] x1 + [2]
                  a__c(x1) = [1] x1 + [5]
                  g(x1) = [1] x1 + [2]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [1]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [4]
                  c_2(x1) = [1] x1 + [3]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
            and weakly orienting the rules
            {  a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_1()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_1()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__h(X) -> a__c(d(X))}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_1()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__h(X) -> a__c(d(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(f(X)) -> a__c(f(g(f(X))))}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__f(X) -> f(X)
             , a__h(X) -> h(X)
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , a__c^#(X) -> c_1()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(f(X)) -> a__c(f(g(f(X))))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [4]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [3]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [1]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [4]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__h(X) -> a__c(d(X))
                 , mark(c(X)) -> a__c(X)
                 , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                 , a__f(X) -> f(X)
                 , a__h(X) -> h(X)
                 , a__h^#(X) -> c_2(a__c^#(d(X)))
                 , a__c^#(X) -> c_1()
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__h(X) -> a__c(d(X))
                   , mark(c(X)) -> a__c(X)
                   , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                   , a__f(X) -> f(X)
                   , a__h(X) -> h(X)
                   , a__h^#(X) -> c_2(a__c^#(d(X)))
                   , a__c^#(X) -> c_1()
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(7) -> 4
                 , a__f_1(7) -> 7
                 , f_0(2) -> 2
                 , f_1(7) -> 4
                 , f_1(7) -> 7
                 , f_1(15) -> 8
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 7
                 , a__c_1(8) -> 4
                 , a__c_1(8) -> 7
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 7
                 , g_1(7) -> 15
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_0(4) -> 6
                 , d_1(2) -> 7
                 , d_1(2) -> 11
                 , d_1(4) -> 13
                 , d_1(7) -> 8
                 , d_1(8) -> 4
                 , d_1(8) -> 7
                 , a__h_1(7) -> 4
                 , a__h_1(7) -> 7
                 , mark_0(2) -> 4
                 , mark_1(2) -> 7
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 7
                 , c_1(8) -> 4
                 , c_1(8) -> 7
                 , h_0(2) -> 2
                 , h_1(7) -> 4
                 , h_1(7) -> 7
                 , a__c^#_0(2) -> 1
                 , a__c^#_0(6) -> 5
                 , a__c^#_1(8) -> 14
                 , a__c^#_1(11) -> 10
                 , a__c^#_1(13) -> 12
                 , c_1_0() -> 1
                 , c_1_0() -> 5
                 , c_1_1() -> 10
                 , c_1_1() -> 12
                 , c_1_1() -> 14
                 , a__h^#_0(2) -> 1
                 , a__h^#_0(4) -> 3
                 , a__h^#_1(7) -> 9
                 , c_2_0(1) -> 1
                 , c_2_0(5) -> 3
                 , c_2_1(10) -> 1
                 , c_2_1(12) -> 3
                 , c_2_1(14) -> 9
                 , mark^#_0(2) -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(9) -> 1}
      
   6) {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
       , a__h^#(X) -> c_2(a__c^#(d(X)))}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
               , a__h^#(X) -> c_2(a__c^#(d(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__h^#(X) -> c_2(a__c^#(d(X)))}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__h^#(X) -> c_2(a__c^#(d(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
            and weakly orienting the rules
            {  a__h^#(X) -> c_2(a__c^#(d(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__h(X) -> a__c(d(X))
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [7]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [1]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [7]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(f(X)) -> a__c(f(g(f(X))))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)
             , mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__h^#(X) -> c_2(a__c^#(d(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(f(X)) -> a__c(f(g(f(X))))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [4]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [13]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__f(X) -> f(X)
                 , a__h(X) -> a__c(d(X))
                 , a__h(X) -> h(X)
                 , mark(c(X)) -> a__c(X)
                 , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                 , a__h^#(X) -> c_2(a__c^#(d(X)))
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__f(X) -> f(X)
                   , a__h(X) -> a__c(d(X))
                   , a__h(X) -> h(X)
                   , mark(c(X)) -> a__c(X)
                   , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                   , a__h^#(X) -> c_2(a__c^#(d(X)))
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(7) -> 4
                 , a__f_1(7) -> 7
                 , f_0(2) -> 2
                 , f_1(7) -> 4
                 , f_1(7) -> 7
                 , f_1(15) -> 8
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 7
                 , a__c_1(8) -> 4
                 , a__c_1(8) -> 7
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 7
                 , g_1(7) -> 15
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_0(4) -> 6
                 , d_1(2) -> 7
                 , d_1(2) -> 11
                 , d_1(4) -> 13
                 , d_1(7) -> 8
                 , d_1(8) -> 4
                 , d_1(8) -> 7
                 , a__h_1(7) -> 4
                 , a__h_1(7) -> 7
                 , mark_0(2) -> 4
                 , mark_1(2) -> 7
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 7
                 , c_1(8) -> 4
                 , c_1(8) -> 7
                 , h_0(2) -> 2
                 , h_1(7) -> 4
                 , h_1(7) -> 7
                 , a__c^#_0(2) -> 1
                 , a__c^#_0(6) -> 5
                 , a__c^#_1(8) -> 14
                 , a__c^#_1(11) -> 10
                 , a__c^#_1(13) -> 12
                 , a__h^#_0(2) -> 1
                 , a__h^#_0(4) -> 3
                 , a__h^#_1(7) -> 9
                 , c_2_0(1) -> 1
                 , c_2_0(5) -> 3
                 , c_2_1(10) -> 1
                 , c_2_1(12) -> 3
                 , c_2_1(14) -> 9
                 , mark^#_0(2) -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(9) -> 1}
      
   7) {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(X) -> c_8()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , a__f^#(X) -> c_8()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f^#(X) -> c_8()}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f^#(X) -> c_8()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [3]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  a__f^#(X) -> c_8()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [3]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [8]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__h(X) -> a__c(d(X))
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(f(X)) -> a__c(f(g(f(X))))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)
             , mark(c(X)) -> a__c(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(f(X)) -> a__c(f(g(f(X))))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__f(X) -> f(X)
                 , a__h(X) -> a__c(d(X))
                 , a__h(X) -> h(X)
                 , mark(c(X)) -> a__c(X)
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , a__f^#(X) -> c_8()
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__f(X) -> f(X)
                   , a__h(X) -> a__c(d(X))
                   , a__h(X) -> h(X)
                   , mark(c(X)) -> a__c(X)
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , a__f^#(X) -> c_8()
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(8) -> 6
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 5
                 , a__c_1(6) -> 4
                 , a__c_1(6) -> 5
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(5) -> 8
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(5) -> 6
                 , d_1(6) -> 4
                 , d_1(6) -> 5
                 , a__h_1(5) -> 4
                 , a__h_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 5
                 , c_1(6) -> 4
                 , c_1(6) -> 5
                 , h_0(2) -> 2
                 , h_1(5) -> 4
                 , h_1(5) -> 5
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 7
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1
                 , c_8_0() -> 1
                 , c_8_0() -> 3
                 , c_8_1() -> 7}
      
   8) {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
       , a__h^#(X) -> c_10()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
               , a__h^#(X) -> c_10()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__h^#(X) -> c_10()}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__h^#(X) -> c_10()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [3]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
            and weakly orienting the rules
            {  a__h^#(X) -> c_10()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [3]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__h^#(X) -> c_10()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [8]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__h^#(X) -> c_10()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__h(X) -> a__c(d(X))
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(f(X)) -> a__c(f(g(f(X))))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)
             , mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , a__h^#(X) -> c_10()
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(f(X)) -> a__c(f(g(f(X))))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__f(X) -> f(X)
                 , a__h(X) -> a__c(d(X))
                 , a__h(X) -> h(X)
                 , mark(c(X)) -> a__c(X)
                 , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                 , a__h^#(X) -> c_10()
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__f(X) -> f(X)
                   , a__h(X) -> a__c(d(X))
                   , a__h(X) -> h(X)
                   , mark(c(X)) -> a__c(X)
                   , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                   , a__h^#(X) -> c_10()
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(8) -> 6
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 5
                 , a__c_1(6) -> 4
                 , a__c_1(6) -> 5
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(5) -> 8
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(5) -> 6
                 , d_1(6) -> 4
                 , d_1(6) -> 5
                 , a__h_1(5) -> 4
                 , a__h_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 5
                 , c_1(6) -> 4
                 , c_1(6) -> 5
                 , h_0(2) -> 2
                 , h_1(5) -> 4
                 , h_1(5) -> 5
                 , a__h^#_0(2) -> 1
                 , a__h^#_0(4) -> 3
                 , a__h^#_1(5) -> 7
                 , mark^#_0(2) -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(7) -> 1
                 , c_10_0() -> 1
                 , c_10_0() -> 3
                 , c_10_1() -> 7}
      
   9) {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [11]
                  g(x1) = [1] x1 + [4]
                  d(x1) = [1] x1 + [6]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [4]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__h(X) -> a__c(d(X))
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [8]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(f(X)) -> a__c(f(g(f(X))))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)
             , mark(c(X)) -> a__c(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(f(X)) -> a__c(f(g(f(X))))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [5]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__f(X) -> f(X)
                 , a__h(X) -> a__c(d(X))
                 , a__h(X) -> h(X)
                 , mark(c(X)) -> a__c(X)
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__f(X) -> f(X)
                   , a__h(X) -> a__c(d(X))
                   , a__h(X) -> h(X)
                   , mark(c(X)) -> a__c(X)
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(8) -> 6
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 5
                 , a__c_1(6) -> 4
                 , a__c_1(6) -> 5
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(5) -> 8
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(5) -> 6
                 , d_1(6) -> 4
                 , d_1(6) -> 5
                 , a__h_1(5) -> 4
                 , a__h_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 5
                 , c_1(6) -> 4
                 , c_1(6) -> 5
                 , h_0(2) -> 2
                 , h_1(5) -> 4
                 , h_1(5) -> 5
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 7
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1}
      
   10)
      {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(c(X)) -> a__c(X)
       , mark(h(X)) -> a__h(mark(X))
       , mark(g(X)) -> g(X)
       , mark(d(X)) -> d(X)
       , a__f(f(X)) -> a__c(f(g(f(X))))
       , a__c(X) -> d(X)
       , a__h(X) -> a__c(d(X))
       , a__f(X) -> f(X)
       , a__c(X) -> c(X)
       , a__h(X) -> h(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(c(X)) -> a__c(X)
               , mark(h(X)) -> a__h(mark(X))
               , mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__f(f(X)) -> a__c(f(g(f(X))))
               , a__c(X) -> d(X)
               , a__h(X) -> a__c(d(X))
               , a__f(X) -> f(X)
               , a__c(X) -> c(X)
               , a__h(X) -> h(X)
               , mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(g(X)) -> g(X)
               , mark(d(X)) -> d(X)
               , a__c(X) -> d(X)
               , a__c(X) -> c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
            and weakly orienting the rules
            {  mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(h(X)) -> c_5(a__h^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [11]
                  g(x1) = [1] x1 + [4]
                  d(x1) = [1] x1 + [6]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(c(X)) -> a__c(X)}
            and weakly orienting the rules
            {  mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(c(X)) -> a__c(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [4]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)}
            and weakly orienting the rules
            {  mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__h(X) -> a__c(d(X))
               , a__h(X) -> h(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [8]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(f(X)) -> a__c(f(g(f(X))))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__h(X) -> a__c(d(X))
             , a__h(X) -> h(X)
             , mark(c(X)) -> a__c(X)
             , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
             , mark(g(X)) -> g(X)
             , mark(d(X)) -> d(X)
             , a__c(X) -> d(X)
             , a__c(X) -> c(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(f(X)) -> a__c(f(g(f(X))))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [5]
                  f(x1) = [1] x1 + [0]
                  a__c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(h(X)) -> a__h(mark(X))}
              Weak Rules:
                {  a__f(f(X)) -> a__c(f(g(f(X))))
                 , a__f(X) -> f(X)
                 , a__h(X) -> a__c(d(X))
                 , a__h(X) -> h(X)
                 , mark(c(X)) -> a__c(X)
                 , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                 , mark(g(X)) -> g(X)
                 , mark(d(X)) -> d(X)
                 , a__c(X) -> d(X)
                 , a__c(X) -> c(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(h(X)) -> a__h(mark(X))}
                Weak Rules:
                  {  a__f(f(X)) -> a__c(f(g(f(X))))
                   , a__f(X) -> f(X)
                   , a__h(X) -> a__c(d(X))
                   , a__h(X) -> h(X)
                   , mark(c(X)) -> a__c(X)
                   , mark^#(h(X)) -> c_5(a__h^#(mark(X)))
                   , mark(g(X)) -> g(X)
                   , mark(d(X)) -> d(X)
                   , a__c(X) -> d(X)
                   , a__c(X) -> c(X)}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(8) -> 6
                 , a__c_0(2) -> 4
                 , a__c_1(2) -> 5
                 , a__c_1(6) -> 4
                 , a__c_1(6) -> 5
                 , g_0(2) -> 2
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_1(5) -> 8
                 , d_0(2) -> 2
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(5) -> 6
                 , d_1(6) -> 4
                 , d_1(6) -> 5
                 , a__h_1(5) -> 4
                 , a__h_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , c_0(2) -> 2
                 , c_0(2) -> 4
                 , c_1(2) -> 5
                 , c_1(6) -> 4
                 , c_1(6) -> 5
                 , h_0(2) -> 2
                 , h_1(5) -> 4
                 , h_1(5) -> 5
                 , a__h^#_0(2) -> 1
                 , a__h^#_0(4) -> 3
                 , a__h^#_1(5) -> 7
                 , mark^#_0(2) -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(7) -> 1}
      
   11)
      {  mark^#(c(X)) -> c_4(a__c^#(X))
       , a__c^#(X) -> c_1()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           a__c(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           a__h(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           a__f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           a__c^#(x1) = [0] x1 + [0]
           c_1() = [0]
           a__h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           mark^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {a__c^#(X) -> c_1()}
            Weak Rules: {mark^#(c(X)) -> c_4(a__c^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a__c^#(X) -> c_1()}
            and weakly orienting the rules
            {mark^#(c(X)) -> c_4(a__c^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__c^#(X) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  a__c(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  a__h(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [1]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  a__c^#(X) -> c_1()
                 , mark^#(c(X)) -> c_4(a__c^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   12)
      {mark^#(c(X)) -> c_4(a__c^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           a__c(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           a__h(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           a__f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           a__c^#(x1) = [0] x1 + [0]
           c_1() = [0]
           a__h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           mark^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {mark^#(c(X)) -> c_4(a__c^#(X))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(c(X)) -> c_4(a__c^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(c(X)) -> c_4(a__c^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  a__c(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  a__h(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {mark^#(c(X)) -> c_4(a__c^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   13)
      {  mark^#(c(X)) -> c_4(a__c^#(X))
       , a__c^#(X) -> c_9()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           a__c(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           a__h(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           a__f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           a__c^#(x1) = [0] x1 + [0]
           c_1() = [0]
           a__h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           mark^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {a__c^#(X) -> c_9()}
            Weak Rules: {mark^#(c(X)) -> c_4(a__c^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {a__c^#(X) -> c_9()}
            and weakly orienting the rules
            {mark^#(c(X)) -> c_4(a__c^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__c^#(X) -> c_9()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  a__c(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  a__h(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [1] x1 + [1]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  a__c^#(X) -> c_9()
                 , mark^#(c(X)) -> c_4(a__c^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   14)
      {mark^#(d(X)) -> c_7()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           a__c(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           a__h(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           a__f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           a__c^#(x1) = [0] x1 + [0]
           c_1() = [0]
           a__h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           mark^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {mark^#(d(X)) -> c_7()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(d(X)) -> c_7()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(d(X)) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  a__c(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  a__h(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {mark^#(d(X)) -> c_7()}
            
            Details:         
              The given problem does not contain any strict rules
      
   15)
      {mark^#(g(X)) -> c_6()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           a__c(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           a__h(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           a__f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           a__c^#(x1) = [0] x1 + [0]
           c_1() = [0]
           a__h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           mark^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6() = [0]
           c_7() = [0]
           c_8() = [0]
           c_9() = [0]
           c_10() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {mark^#(g(X)) -> c_6()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(g(X)) -> c_6()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(g(X)) -> c_6()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  a__c(x1) = [0] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  a__h(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  a__c^#(x1) = [0] x1 + [0]
                  c_1() = [0]
                  a__h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6() = [0]
                  c_7() = [0]
                  c_8() = [0]
                  c_9() = [0]
                  c_10() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {mark^#(g(X)) -> c_6()}
            
            Details:         
              The given problem does not contain any strict rules